JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Nonlinear modeling and adaptive monitoring with fuzzy and multivariate statistical methods in biological wastewater treatment plants.

Journal of Biotechnology 2003 October 10
A new approach to nonlinear modeling and adaptive monitoring using fuzzy principal component regression (FPCR) is proposed and then applied to a real wastewater treatment plant (WWTP) data set. First, principal component analysis (PCA) is used to reduce the dimensionality of data and to remove collinearity. Second, the adaptive credibilistic fuzzy-c-means method is used to appropriately monitor diverse operating conditions based on the PCA score values. Then a new adaptive discrimination monitoring method is proposed to distinguish between a large process change and a simple fault. Third, a FPCR method is proposed, where the Takagi-Sugeno-Kang (TSK) fuzzy model is employed to model the relation between the PCA score values and the target output to avoid the over-fitting problem with original variables. Here, the rule bases, the centers and the widths of TSK fuzzy model are found by heuristic methods. The proposed FPCR method is applied to predict the output variable, the reduction of chemical oxygen demand in the full-scale WWTP. The result shows that it has the ability to model the nonlinear process and multiple operating conditions and is able to identify various operating regions and discriminate between a sustained fault and a simple fault (or abnormalities) occurring within the process data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app