Add like
Add dislike
Add to saved papers

Acrolein-sequestering ability of endogenous dipeptides: characterization of carnosine and homocarnosine/acrolein adducts by electrospray ionization tandem mass spectrometry.

Acrolein (ACR), the carbonyl toxin produced by lipid peroxidation, is significantly increased in Alzheimer's disease brain. Since ACR is one of the most reactive and neurotoxic aldehydes, and human brain contains both carnosine (beta-alanine-L-histidine) and homocarnosine (gamma-aminobutyryl-L-histidine), the aim of this work was first to evaluate the quenching ability of the two peptides towards ACR and then to characterize their reaction products by electrospray ionization tandem mass spectrometry (ESI-MS/MS; infusion experiments; positive-ion mode). The reaction progress of ACR with carnosine or homocarnosine was studied in phosphate buffer, by monitoring ACR consumption (by reverse-phase LC) and formation of the reaction products by ESI-MS/MS at different incubation times. N-Acetylcarnosine was used as reference compound to identify the sites of reaction. Both the dipeptides were able to quench ACR by almost 60% at 1 h and by more than 85% after 3 h incubation. Different reaction products between ACR and carnosine/homocarnosine were detected after 3 and 24 h, to indicate a complex reaction pathway involving sequential addition of 1, 2 and 3 moles of ACR/mole of the dipeptide to both the beta-alanine and histidine residues. The ESI mass spectra of ACR/carnosine reaction mixtures indicate formation of several molecular species, among which the predominant are: (a) the 14-membered macrocyclic derivatives, deriving from the formation of the iminic bond between the terminal amino group followed by intramolecular Michael addition of the C(3) of the ACR moiety to histidine; (b) the N(beta)-(3-formyl-3,4-dehydropiperidino) derivatives arising from the Michael addition of two acrolein molecules to the amino group of beta-alanine, followed by an aldol condensation and dehydration.The reaction of homocarnosine with ACR follows the same pathway, giving rise to the formation of homologous adducts. The results of this study shed light on the mechanism, until now never demonstrated, through which carnosine and homocarnosine detoxify the highly reactive aldehyde acrolein in a buffer system, and represent the starting point for further studies aimed at elucidating the biological role of these dipeptides in brain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app