JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Loaded shortening, power output, and rate of force redevelopment are increased with knockout of cardiac myosin binding protein-C.

Circulation Research 2003 October 18
Myosin binding protein-C (MyBP-C) is localized to the thick filaments of striated muscle where it appears to have both structural and regulatory functions. Importantly, mutations in the cardiac MyBP-C gene are associated with familial hypertrophic cardiomyopathy. The purpose of this study was to examine the role that MyBP-C plays in regulating force, power output, and force development rates in cardiac myocytes. Skinned cardiac myocytes from wild-type (WT) and MyBP-C knockout (MyBP-C-/-) mice were attached between a force transducer and position motor. Force, loaded shortening velocities, and rates of force redevelopment were measured during both maximal and half-maximal Ca2+ activations. Isometric force was not different between the two groups with force being 17.0+/-7.2 and 20.5+/-3.1 kN/m2 in wild-type and MyBP-C-/- myocytes, respectively. Peak normalized power output was significantly increased by 26% in MyBP-C-/- myocytes (0.15+/-0.01 versus 0.19+/-0.03 P/Po x ML/sec) during maximal Ca2+ activations. Interestingly, peak power output in MyBP-C-/- myocytes was increased to an even greater extent (46%, 0.09+/-0.03 versus 0.14+/-0.02 P/Po x ML/sec) during half-maximal Ca2+ activations. There was also an effect on the rate constant of force redevelopment (ktr) during half-maximal Ca2+ activations, with ktr being significantly greater in MyBP-C-/- myocytes (WT=5.8+/-0.9 s(-1) versus MyBP-C-/-=7.7+/-1.7 s(-1)). These results suggest that cMyBP-C is an important regulator of myocardial work capacity whereby MyBP-C acts to limit power output.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app