Add like
Add dislike
Add to saved papers

The distribution of anaerobic energy in 1000 and 4000 metre cycling bouts.

In sprinting events of short duration, performance depends not only on the mean external power output and the frictional losses but also on the distribution of energy over the race. To investigate the optimal distribution of anaerobic energy during cycling the 1000 m time trial and the 4000 m pursuit, we simulated a power equation which contains expressions for the production of aerobic and anaerobic power, for frictional losses and for the rate of change of kinetic energy. Parameters for air- and rolling resistance were derived from the literature and the equations for aerobic and anaerobic power production were based on supra-maximal bicycle ergometer tests. Simulated lap and final times were compared to those realized by the best four athletes during the 1990 World Championships. The mean final times of these athletes of 64.1 s and 272.6 s for the 1000 m and 4000 m respectively were closely approximated by the simulated times of 63.7 s and 281.3 s. The simulations show that performance in the 1000 m race depends to a great extent on a large power output at the onset of the race. Moreover, it is demonstrated that this distance should be cycled in an all out fashion and not with a uniform velocity after the start despite the higher air frictional losses. For the 4000 m pursuit it appears to be more effective to perform a short but powerful start and then continue the race with a constant or only slightly decreasing power output.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app