COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Dominant negative selection of heterologous genes: isolation of Candida albicans genes that interfere with Saccharomyces cerevisiae mating factor-induced cell cycle arrest.

We have used a genomic library of Candida albicans to transform Saccharomyces cerevisiae and screened for genes that act similarly to dominant negative mutations by interfering with pheromone-mediated cell cycle arrest. Six different plasmids were identified from 2000 transformants; four have been sequenced. One gene (CZF1) encodes a protein with structural motifs characteristic of a transcription factor. A second gene (CCN1) encodes a cyclin homologue, a third (CRL1) encodes a protein with sequence similarity to GTP-binding proteins of the RHO family, and a fourth (CEK1) encodes a putative kinase of the ERK family. Since CEK1 confers a phenotype similar to that of the structurally related S. cerevisiae gene KSS1 but cannot complement a KSS1 defect, it is evident that dominant negative selection can identify proteins that complementation screens would miss. Because dominant negative mutations exert their influence even in wild-type strain backgrounds, this approach should be a general method for the analysis of complex cellular processes in organisms not amenable to direct genetic analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app