JOURNAL ARTICLE

Low endogenous glucocorticoid allows induction of kidney cortical cyclooxygenase-2 during postnatal rat development

Kirsten Madsen, Jane Stubbe, Tianxin Yang, Ole Skøtt, Sebastian Bachmann, Boye L Jensen
American Journal of Physiology. Renal Physiology 2004, 286 (1): F26-37
13129852
In postnatal weeks 2-4, cyclooxygenase-2 (COX-2) is induced in the rat kidney cortex where it is critically involved in final stages of kidney development. We examined whether changes in circulating gluco- or mineralocorticosteroids or in their renal receptors regulate postnatal COX-2 induction. Plasma corticosterone concentration peaked at birth, decreased to low levels at days 3-13, and increased to adult levels from day 22. Aldosterone peaked at birth and then stabilized at adult levels. Gluco- and mineralocorticoid receptor (GR and MR) mRNAs were expressed stably in kidney before, during, and after COX-2 induction. 11 beta-hydroxysteroid dehydrogenase 2 was induced shortly after birth and was widely distributed in the whole collecting duct system in the suckling period and then returned to an adult pattern. Supplementation with corticosterone (20 mg.kg-1.day-1) or GR-specific dexamethasone (1 mg.kg-1.day-1) during low endogenous corticosterone suppressed renal COX-2 mRNA and protein and led to a restricted distribution of COX-2 immunolabeling. The ability of glucocorticoids to affect COX-2 was reflected in colocalization of GR-alpha and COX-2 immunoreactivity and mRNAs in thick ascending limb of Henle's loop. The MR antagonist potassium canrenoate (20 mg.kg-1.day-1) enhanced COX-2 expression from days 5 to 10, but low MR-specific concentrations of DOCA (1 mg.kg-1.day-1) had no effect on COX-2. Renomedullary interstitial cells expressed GR-alpha and COX-2. Dexamethasone suppressed COX-2 in these cells. Thus low plasma concentrations of corticosterone allowed for cortical and medullary COX-2 induction during postnatal kidney development. Increased circulating glucocorticoid in the postnatal period may damage late renal development through inhibition of COX-2.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
13129852
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"