JOURNAL ARTICLE

Bone mineral density in children, adolescents and adults with glycogen storage disease type Ia: a cross-sectional and longitudinal study

J P Rake, G Visser, D Huismans, S Huitema, E van der Veer, D A Piers, G P A Smit
Journal of Inherited Metabolic Disease 2003, 26 (4): 371-84
12971425
The occurrence of (symptoms related to) osteopenia is a known complication in glycogen storage disease type Ia (GSD Ia) patients. However, only limited information is available about bone mineral density (BMD). Using dual energy x-ray absorptiometry, we studied both cross-sectional and longitudinal lumbar spine areal BMD (BMD(areal) in g/cm2), areal BMD corrected for delayed bone maturation (BMD(bone age) in g/cm2), and volumetric BMD (BMD(vol) in g/cm3). Prepubertal GSD Ia patients (n = 8) had normal BMD (median z-scores BMD(areal) -0.6, BMD(bone age) -0.5 and BMD(vol) -0.5), whereas adolescent patients (n = 12) and adult patients (n = 9) had significantly reduced BMD (BMD(areal) -2.3, BMD(bone age) -1.6, BMD(vol) -2.0, and BMD(areal) -1.9, BMD(vol) -1.5, respectively). Our longitudinal study, showing a stable BMD(areal) but a trend to a decrease in BMD(vol) in prepubertal patients during follow-up, did not clarify whether the difference in BMD between prepubertal and adolescent/adult patients reflects a diminished accretion of BMD during childhood or reflects historical differences in treatment. In adolescent and adult GSD Ia patients, BMD(areal) and BMD(vol) were reduced but stable during follow-up. Especially patients with delayed bone maturation were at risk for reduced BMD. No correlation between parameters of metabolic control and BMD could be detected. Daily calcium intake was within recommended allowances ranges. Abnormal biochemical results included hypomagnesaemia (29%), hypercalciuria (34%) and reduced tubular resorption of phosphate (21%). Although the underlying pathophysiology of reduced BMD in GSD Ia remains unsolved, metabolic control should be optimized to correct as much as possible metabolic and endocrine abnormalities that may influence both bone matrix formation and bone mineral accretion.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
12971425
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"

We want to hear from doctors like you!

Take a second to answer a survey question.