The intact human acetylcholinesterase C-terminal oligomerization domain is alpha-helical in situ and in isolation, but a shorter fragment forms beta-sheet-rich amyloid fibrils and protofibrillar oligomers

Matthew G Cottingham, Jan L A Voskuil, David J T Vaux
Biochemistry 2003 September 16, 42 (36): 10863-73
A 14-residue fragment of the C-terminal oligomerization domain, or T-peptide, of human acetylcholinesterase (AChE) shares sequence homology with the amyloid-beta peptide implicated in Alzheimer's disease and can spontaneously self-assemble into classical amyloid fibrils under physiological conditions [Greenfield, S. A., and Vaux, D. J. (2002) Neuroscience 113, 485-492; Cottingham, M. G., Hollinshead, M. S., and Vaux, D. J. (2002) Biochemistry 41, 13539-13547]. Here we demonstrate that the conformation of this AChE(586-599) peptide, both before and after fibril formation, is different from that of a longer peptide, T(40), corresponding to the entire 40-amino acid T-peptide (residues 575-614 of AChE). This peptide is prone to homomeric hydrophobic interactions, consistent with its role in AChE subunit assembly, and possesses an alpha-helical structure which protects against the development of the beta-sheet-rich amyloidogenic conformation favored by the shorter constituent AChE(586-599) fragment. Using a conformation-sensitive monoclonal antibody raised against the alpha-helical T(40) peptide, we demonstrate that the conformation of the T-peptide domain within intact AChE is antigenically indistinguishable from that of the synthetic T(40) peptide. A second monoclonal antibody raised against the fibrillogenic AChE(586-599) fragment recognizes not only beta-sheet amyloid aggregates but also SDS-resistant protofibrillar oligomers. A single-antibody sandwich ELISA confirms that such oligomers exist at micromolar peptide concentrations, well below that required for formation of classical amyloid fibrils. Epitope mapping with this monoclonal antibody identifies a region near the N-terminus of the peptide that remains accessible in oligomer and fibril alike, suggesting a model for the arrangement of subunits within AChE(586-599) protofibrils and fibrils.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"