OPEN IN READ APP
COMPARATIVE STUDY
JOURNAL ARTICLE

Resistance to high-fat diet-induced obesity and altered expression of adipose-specific genes in HSL-deficient mice

Kenji Harada, Wen-Jun Shen, Shailja Patel, Vanita Natu, Jining Wang, Jun-ichi Osuga, Shun Ishibashi, Fredric B Kraemer
American Journal of Physiology. Endocrinology and Metabolism 2003, 285 (6): E1182-95
12954598
To elucidate the role of hormone-sensitive lipase (HSL) in diet-induced obesity, HSL-deficient (HSL-/-) and wild-type mice were fed normal chow or high-fat diets. HSL-/- mice were resistant to diet-induced obesity showing higher core body temperatures. Weight and triacylglycerol contents were decreased in white adipose tissue (WAT) but increased in both brown adipose tissue (BAT) and liver of HSL-/- mice. Serum insulin levels in the fed state and tumor necrosis factor-alpha mRNA levels in adipose tissues were higher, whereas serum levels of adipocyte complement-related protein of 30 kDa (ACRP30)/adiponectin and leptin, as well as mRNA levels of ACRP30/adiponectin, leptin, resistin, and adipsin in WAT, were lower in HSL-/- mice than in controls. Expression of transcription factors associated with adipogenesis (peroxisome proliferator-activated receptor-gamma, CAAT/enhancer-binding protein-alpha) and lipogenesis (carbohydrate response element-binding protein, adipocyte determination- and differentiation-dependent factor-1/sterol regulatory element-binding protein-1c), as well as of adipose differentiation markers (adipocyte lipid-binding protein, perilipin, lipoprotein lipase), lipogenic enzymes (glycerol-3-phosphate acyltransferase, acyl-CoA:diacylglycerol acyltransferase-1 and -2, fatty acid synthase, ATP citrate lyase) and insulin signaling proteins (insulin receptor, insulin receptor substrate-1, GLUT4), was suppressed in WAT but not in BAT of HSL-/- mice. In contrast, expression of genes associated with cholesterol metabolism (sterol-regulatory element-binding protein-2, 3-hydroxy-3-methylglutaryl-CoA reductase, acyl-CoA:cholesterol acyltransferase-1) and thermogenesis (uncoupling protein-2) was upregulated in both WAT and BAT of HSL-/- mice. Our results suggest that impaired lipolysis in HSL deficiency affects lipid metabolism through alterations of adipose differentiation and adipose-derived hormone levels.

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
12954598
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"