JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The anti-inflammatory effect of honokiol on neutrophils: mechanisms in the inhibition of reactive oxygen species production.

Reactive oxygen species produced by neutrophils contribute to the pathogenesis of focal cerebral ischemia/reperfusion injury and signal the inflammatory response. We have previously shown that honokiol, an active principle extracted from Magnolia officinalis, has a protective effect against focal cerebral ischemia/reperfusion injury in rats that paralleled a reduction in reactive oxygen species production by neutrophils. To elucidate the underlying mechanism(s) of the antioxidative effect of honokiol, peripheral neutrophils isolated from rats were activated with phorbol-12-myristate-13-acetate (PMA) or N-formyl-methionyl-leucyl-phenylalanine (fMLP) in the presence or absence of honokiol. In this study, we found that honokiol inhibited PMA- or fMLP-induced reactive oxygen species production by neutrophils by three distinct mechanisms: (1) honokiol diminished the activity of assembled-NADPH oxidase, a major reactive oxygen species producing enzyme in neutrophils by 40% without interfering with its protein kinase C (PKC)-dependent assembly; (2) two other important enzymes for reactive oxygen species generation in neutrophils, i.e., myeloperoxidase and cyclooxygenase, were also inhibited by honokiol by 20% and 70%, respectively; and (3) honokiol enhanced glutathione (GSH) peroxidase activity by 30%, an enzyme that triggers the metabolism of hydrogen peroxide (H2O2). These data suggested that honokiol, acting as a potent reactive oxygen species inhibitor/scavenger, could achieve its focal cerebral ischemia/reperfusion injury protective effect by modulating enzyme systems related to reactive oxygen species production or metabolism, including NADPH oxidase, myeloperoxidase, cyclooxygenase, and GSH peroxidase in neutrophils.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app