JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Identification of a new laccase gene and confirmation of genomic predictions by cDNA sequences of Trametes sp. I-62 laccase family.

The strain Trametes sp. I-62 (CECT 20197) is a white-rot fungus with great potential for biotechnological applications in the fields of industrial waste water decolorization and clean up. Three laccase genes: lcc1, lcc2 and lcc3 have been cloned and sequenced from this basidiomycete. In this work, the coding regions of the corresponding cDNAs have been synthesized, cloned, and sequenced. They are 1563, 1563 and 1575 bp in length, respectively. Former putative intron/exon structures from genomic DNA are fully confirmed by match analysis with our cDNA sequences. Using Polymerase Chain Reaction--Restriction Fragment Length Polymorphism (PCR-RFLP) analysis, an additional laccase cDNA was also identified, corresponding to a new gene, lcc1A, which displayed 99.6% identity with lcc1 at protein level. Such high similarity between lcc1 and lcc1A sequences, and the comparison with reports from other basidiomycete laccases, suggest that in this strain these two genes are allelic variants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app