JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228).

Molecular Microbiology 2003 September
Staphylococcus epidermidis strains are diverse in their pathogenicity; some are invasive and cause serious nosocomial infections, whereas others are non-pathogenic commensal organisms. To analyse the implications of different virulence factors in Staphylococcus epidermidis infections, the complete genome of Staphylococcus epidermidis strain ATCC 12228, a non-biofilm forming, non-infection associated strain used for detection of residual antibiotics in food products, was sequenced. This strain showed low virulence by mouse and rat experimental infections. The genome consists of a single 2499 279 bp chromosome and six plasmids. The chromosomal G + C content is 32.1% and 2419 protein coding sequences (CDS) are predicted, among which 230 are putative novel genes. Compared to the virulence factors in Staphylococcus aureus, aside from delta-haemolysin and beta-haemolysin, other toxin genes were not found. In contrast, the majority of adhesin genes are intact in ATCC 12228. Most strikingly, the ica operon coding for the enzymes synthesizing interbacterial cellular polysaccharide is missing in ATCC 12228 and rearrangements of adjacent genes are shown. No mec genes, IS256, IS257, were found in ATCC 12228. It is suggested that the absence of the ica operon is a genetic marker in commensal Staphylococcus epidermidis strains which are less likely to become invasive.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app