Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Involvement of the Akt/mTOR pathway on EGF-induced cell transformation.

Our previous study demonstrated that phosphatidylinositol 3-kinase (PI3K) is necessary for epidermal growth factor (EGF)-induced cell transformation in mouse epidermal JB6 cells. Akt and the mammalian target of rapamycin (mTOR) are regarded as PI3K downstream effectors. Therefore, in this study, we investigated the role of Akt and mTOR on EGF-induced cell transformation in JB6 cells using rapamycin, a specific mTOR inhibitor, and cells expressing dominant negative mutants of Akt1 (DNM-Akt1). We found that the treatment of cells with rapamycin inhibited EGF-induced cell transformation but only slightly inhibited JB6 cell proliferation at 72 h. Although LY294002, a PI3K inhibitor, attenuated EGF-induced activator protein 1 (AP-1) activation, treatment with rapamycin did not affect AP-1 activity. Treatment with rapamycin inhibited EGF-induced phosphorylation and activation of ribosomal p70 S6 protein kinase (p70 S6K), an mTOR downstream target, but had no effect on phosphorylation and activation of Akt. Rapamycin also had no effect on EGF-induced phosphorylation of extracellular signal-regulated protein kinases (ERKs). We showed that introduction of DNM-Akt1 into JB6 mouse epidermal Cl 41 (JB6 Cl 41) cells inhibits EGF-induced cell transformation without blocking cell proliferation. The expression of DNM-Akt1 also suppressed EGF-induced p70 S6K activation as well as Akt activation. These results indicated an involvement of the Akt/mTOR pathway in EGF-induced cell transformation in JB6 cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app