Common gene polymorphisms and nutrition: emerging links with pathogenesis of multifactorial chronic diseases (review)

Alexandre Loktionov
Journal of Nutritional Biochemistry 2003, 14 (8): 426-51
Rapid progress in human genome decoding has accelerated search for the role of gene polymorphisms in the pathogenesis of complex multifactorial diseases. This review summarizes the results of recent studies on the associations of common gene variants with multifactorial chronic conditions strongly affected by nutritional factors. Three main individual sections discuss genes related to energy homeostasis regulation and obesity, cardiovascular disease (CVD), and cancer. It is evident that several major chronic diseases are closely related (often through obesity) to deregulation of energy homeostasis. Multiple polymorphic genes encoding central and peripheral determinants of energy intake and expenditure have been revealed over the past decade. Food intake control may be affected by polymorphisms in the genes encoding taste receptors and a number of peripheral signaling peptides such as insulin, leptin, ghrelin, cholecystokinin, and corresponding receptors. Polymorphic central regulators of energy intake include hypothalamic neuropeptide Y, agouti-related protein, melanocortin pathway factors, CART (cocaine- and amphetamine-regulated transcript), some other neuropeptides, and receptors for these molecules. Potentially important polymorphisms in the genes encoding energy expenditure modulators (alpha- and beta- adrenoceptors, uncoupling proteins, and regulators of adipocyte growth and differentiation) are also discussed. CVD-related gene polymorphisms comprising those involved in the pathogenesis of atherosclerosis, blood pressure regulation, hemostasis control, and homocysteine metabolism are considered in a separate section with emphasis on multiple polymorphisms affecting lipid transport and metabolism and their interactions with diet. Cancer-associated polymorphisms are discussed for groups of genes encoding enzymes of xenobiotic metabolism, DNA repair enzymes, factors involved in the cell cycle control, hormonal regulation-associated proteins, enzymes related to DNA methylation through folate metabolism, and angiogenesis-related factors. There is an apparent progress in the field with hundreds of new gene polymorphisms discovered and characterized, however firm evidence consistently linking them with pathogenesis of complex chronic diseases is still limited. Ways of improving the efficiency of candidate gene approach-based studies are discussed in a short separate section. Successful unraveling of interaction between dietary factors, polymorphisms, and pathogenesis of several multifactorial diseases is exemplified by studies of folate metabolism in relation to CVD and cancer. It appears that several new directions emerge as targets of research on the role of genetic variation in relation to diet and complex chronic diseases. Regulation of energy homeostasis is a fundamental problem insufficiently investigated in this context so far. Impacts of genetic variation on systems controlling angiogenesis, inflammatory reactions, and cell growth and differentiation (comprising regulation of the cell cycle, DNA repair, and DNA methylation) are also largely unknown and need thorough analysis. These goals can be achieved by complex simultaneous analysis of multiple polymorphic genes controlling carefully defined and selected elements of relevant metabolic and regulatory pathways in meticulously designed large-scale studies.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"