JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Inactivation of Ret/Ptc1 oncoprotein and inhibition of papillary thyroid carcinoma cell proliferation by indolinone RPI-1.

Genetic alterations causing oncogenic activation of the RET gene are recognized as pathogenic events in papillary and medullary thyroid carcinomas. Inhibition of Ret oncoprotein functions could thereby represent a specific therapeutic approach. We previously described the inhibitory activity of the 2-indolinone derivative RPI-1 (formerly Cpdl) on the tyrosine kinase activity and transforming ability of the products of the RET/PTC1 oncogene exogenously expressed in murine cells. In the present study, we investigated the effects of RPI-1 in the human papillary thyroid carcinoma cell line TPC-1 spontaneously harboring the RET/PTC1 rearrangement. Treatment with RPI-1 inhibited cell proliferation and induced accumulation of cells at the G2 cell cycle phase. In treated cells, Ret/Ptc1 tyrosine phosphorylation was abolished along with its binding to Shc and phospholipase C(gamma), thereby indicating abrogation of constitutive signaling mediated by the oncoprotein. Activation of JNK2 and AKT was abolished, thus supporting the drug inhibitory efficacy on downstream pathways. In addition, cell growth inhibition was associated with a reduction in telomerase activity by nearly 85%. These findings in a cellular context relevant to the pathological function of RET oncogenes support the role of Ret oncoproteins as useful targets for therapeutic intervention, and suggest RPI-1 as a promising candidate for preclinical development in the treatment of thyroid tumors expressing RET oncogenes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app