Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Decreased fatty acid esterification compensates for the reduced lipolytic activity in hormone-sensitive lipase-deficient white adipose tissue.

It has been observed previously that hormone-sensitive lipase-deficient (HSL-ko) mice have reduced white adipose tissue (WAT) stores compared to control mice. These findings contradict the expectation that the decreased lipolytic activity in WAT of HSL-ko mice would cause accumulation of triglycerides (TGs) in that tissue. Here we demonstrate that the cellular TG synthesis in HSL-deficient WAT is markedly reduced due to downregulation of the enzymatic activities of glycerophosphate acyltransferase, dihydroxyacetonphosphate acyltransferase, lysophosphatidate acyltransferase, and diacylglycerol acyltransferase. Fatty acid de novo synthesis is also decreased due to reduced cellular glucose uptake, reduced glucose incorporation into adipose tissue lipids, and reduced activities of acetyl:CoA carboxylase and fatty acid synthase. Finally, the activities of phosphoenolpyruvate carboxykinase (PEPCK), acyl:CoA synthetase (ACS), and glucose 6-phosphate dehydrogenase, the enzymes that provide glycerol-3-phosphate, acyl-CoA, and NADPH for TG synthesis, respectively, are decreased in HSL-ko mice. The reduced expression of the peroxisome proliferator-activated receptor gamma (PPAR gamma) target genes PEPCK, ACS, and aP2, as well as reduced mRNA levels of PPAR gamma itself, suggest the involvement of this transcription factor in the downregulation of lipogenesis. Taken together, these results establish that in the absence of HSL, the reduced NEFA production is counteracted by a drastic reduction of NEFA reesterification that provides sufficient quantities of NEFA for release into the circulation. These metabolic adaptations result in decreased fat mass in HSL-ko mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app