JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Dystrophin disruption in enterovirus-induced myocarditis and dilated cardiomyopathy: from bench to bedside.

Genetic defects of the dystrophin-glycoprotein complex (DGC) cause hereditary dilated cardiomyopathy. Enteroviruses can also cause cardiomyopathy and we have previously described a mechanism involved in enterovirus-induced dilated cardiomyopathy: The enteroviral protease 2A directly cleaves dystrophin in the hinge 3 region, leading to functional dystrophin impairment. During infection of mice with coxsackievirus B3, the DGC in the heart is disrupted and the sarcolemmal integrity is lost in virus-infected cardiomyocytes. Additionally, dystrophin deficiency markedly increases enterovirus-induced cardiomyopathy in vivo, suggesting a pathogenetic role of the dystrophin cleavage in enterovirus-induced cardiomyopathy. Here, we extend these experimental findings to a patient with dilated cardiomyopathy due to a coxsackievirus B2 myocarditis. Endomyocardial biopsy specimens showed an inflammatory infiltrate and myocytolysis. Immunostaining for the enteroviral capsid antigen VP1 revealed virus-infected cardiomyocytes. Focal areas of cardiomyocytes displayed a loss of the sarcolemmal staining pattern for dystrophin and beta-sarcoglycan identical to previous findings in virus-infected mouse hearts. In vitro, coxsackievirus B2 protease 2A cleaved human dystrophin. These findings demonstrate that in human coxsackievirus B myocarditis a focal disruption of the DGC can principally occur and may contribute to the pathogenesis of human enterovirus-induced dilated cardiomyopathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app