CLINICAL TRIAL
COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The curvature constant parameter of the power-duration curve for varied-power exercise.

INTRODUCTION: The tolerable duration (t) for high-intensity cycle ergometry bears a hyperbolic relationship to the power output (P) with an asymptote termed the critical power (CP), and a curvature constant (W') that is numerically equivalent to an amount of work that can be performed above CP. The physiological nature of W' has received little consideration compared with CP, e.g., whether the total amount of work above CP remains constant when the power actually changes during the high-intensity task.

PURPOSE: The purpose of this study was to compare W' derived from the standard estimation method, consisting of several different constant-P tests, and the total amount of work above CP during an exhausting exercise bout using a variable-P protocol.

METHODS: Eleven healthy male subjects (age: 21-40 yr) volunteered to participate in this study. Each initially performed four-to-six high-intensity square-wave exercise bouts for estimation of CP [mean (SD); 213.3 (22.4) W] and W' [12.68 (3.08) kJ]. The subjects subsequently performed two variable-P tests to the limit of tolerance. During the first part, P was 117% or 134% of CP for a duration that expended approximately half of W'. The work rate was then abruptly increased to 134% (UP protocol) or decreased to 117% (DOWN protocol) of CP for the second part.

RESULTS: There were no significant differences between W' [12.68 (3.08) kJ] and the total amount of work above CP during the UP [12.14 (4.18) kJ] and DOWN [12.72 (4.05) kJ] protocols (P > 0.05).

CONCLUSION: We conclude that the work equivalent of W' is not affected by power variations during exhausting cycle ergometry, at least in the P range of 100-134% of CP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app