JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

NADPH oxidase-derived superoxide augments endothelin-1-induced venoconstriction in mineralocorticoid hypertension.

Hypertension 2003 September
Deoxycorticosterone acetate (DOCA)-salt hypertension is characterized by low renin/angiotensin but increased arterial superoxide levels. We have recently reported that the arterial endothelin-1 (ET-1) level is increased, resulting in NADPH oxidase activation and superoxide generation. However, the effect of ET-1 on venous superoxide production and its relation to venoconstriction are unknown. The present study tested the hypotheses that ET-1 stimulates venous NADPH oxidase and superoxide via its ET(A) receptors, resulting in enhanced venoconstriction in DOCA-salt hypertensive rats. Treatment with ET-1 (0.01 to 1 nmol/L), but not the selective ET(B) receptor agonist sarafotoxin s6c, of vena cavas of normal rats concentration-dependently increased superoxide levels, an effect that was abolished by the selective ET(A) receptor antagonist ABT-627. Although the ET-1 level was not increased in the vena cava and plasma, both venous NADPH oxidase activity and superoxide levels were significantly higher in DOCA-salt compared with sham rats. Moreover, ET-1 treatment (10(-9) mol/L, 10 minutes) of isolated vena cavas further elevated superoxide levels in DOCA-salt rats only but not sham rats, an effect that was abrogated by the superoxide scavenger tempol. Similarly, ET-1-induced contractions of isolated vena cavas of DOCA-salt but not sham rats were significantly inhibited by tempol. The NADPH oxidase inhibitor apocynin significantly reduced superoxide levels in vena cavas of DOCA-salt rats and in ET-1-treated vena cavas of normal rats. Finally, in vivo ET(A) receptor blockade by ABT-627 significantly lowered venous superoxide levels and blood pressure in DOCA-salt but not sham rats. These results suggest that superoxide contributes to ET-1-induced venoconstriction through an elevated venous NADPH oxidase activity in mineralocorticoid hypertension.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app