Add like
Add dislike
Add to saved papers

Promoter methylation and silencing of the tissue factor pathway inhibitor-2 (TFPI-2), a gene encoding an inhibitor of matrix metalloproteinases in human glioma cells.

Oncogene 2003 July 18
We have shown previously that the tissue factor pathway inhibitor-2 (TFPI-2), a broad range proteinase inhibitor, is highly expressed in low-grade gliomas, but, minimally expressed or undetectable in glioblastomas, and that enforced expression of this gene reduces the invasive properties of brain tumor cells. Here, we examined the role of promoter methylation as a mechanism of TFPI-2 gene silencing. In SNB19 glioblastoma cells, which have no detectable TFPI-2 expression, 5-aza-2'-deoxycytidine (5aC), an inhibitor of DNA methyltransferase, induced TFPI-2 mRNA in a dose-dependent manner. Trichostatin A (TSA), the histone deacetylase (HDAC) inhibitor, by itself, was more efficient than 5aC in inducing TFPI-2 transcripts, and the 5aC+TSA combination resulted in highly synergistic reactivation of the gene, both at the transcript and protein levels. In Hs683 glioma cells, which express the TFPI-2 gene at high levels, transfection of the in vitro methylated TFPI-2 promoter constructs resulted in a drastic decrease of promoter activity compared to the unmethylated promoter. Further, the methylation-specific PCR in SNB19 and Hs683 cells showed that TFPI-2 gene repression was closely linked with methylation of the CpG islands in the promoter. Finally, the chromatin immunoprecipitation assays in SNB19 cells showed that the methylated and repressed TFPI-2 promoter was associated with the methyl-CpG binding protein 2 (MeCP2), and that gene reactivation resulted in the loss of MeCP2 from this site. These studies establish that TFPI-2 is transcriptionally silenced through promoter methylation in SNB19 cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app