Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Targeted introduction of a diphtheria toxin resistant mutation into the chromosomal EF-2 locus of Pichia pastoris and expression of immunotoxin in the EF-2 mutants.

In an attempt to increase the production of a diphtheria toxin (DT) based immunotoxin by Pichia pastoris, we have created DT-resistant mutants that contain a substitution of arginine for glycine at position 701 in elongation factor 2 (EF-2). To achieve this, we first cloned and characterized the EF-2 gene (PEF1), and then made a construct pBLURA-Delta5'mutEF-2 that efficiently introduces specific mutations into the chromosomal EF-2 gene in P. pastoris by in vivo homologous recombination. pBLURA-Delta5(')mutEF-2 contains a selection marker URA3 and a 5' truncated form of the P. pastoris PEF1 that had been modified in vitro to carry the nucleotide mutations for the Gly(701) to Arg transition. Unlike the non-mutated strains, the EF-2 mutants are resistant to high-level intracellular expression of DT A chain that can catalyze the ADP-ribosylation. When used to express the secreted bivalent anti-T cell immunotoxin, A-dmDT390-bisFv(G4S), the EF-2 mutant strains showed increased viability compared to the non-mutated strains. However, they did not show an advantage over the non-mutated expressing strain in the production of the immunotoxin. Western blotting analysis revealed that although the EF-2 mutants did not increase the accumulation of intact A-dmDT390-bisFv(G4S) in the culture medium, they generated larger amounts of degraded products found in both the medium and cell pellets compared to the non-mutant expressing clone. In addition, double copy expression resulted in greater amounts of intact immunotoxin being retained within cellular compartments as well as degraded products. Based on these findings, we suggest that the secretory capacity may be rate limiting for divalent immunotoxin production in P. pastoris.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app