Add like
Add dislike
Add to saved papers

Painful inflammation-induced increase in mu-opioid receptor binding and G-protein coupling in primary afferent neurons.

Opioids mediate their analgesic effects by activating mu-opioid receptors (MOR) not only within the central nervous system but also on peripheral sensory neurons. The peripheral analgesic effects of opioids are best described under inflammatory conditions (e.g., arthritis). The present study investigated the effects of inflammation on MOR binding and G-protein coupling of full versus partial MOR agonists in dorsal root ganglia (DRG) of primary afferent neurons. Our results show that Freund's complete adjuvant (FCA) unilateral hindpaw inflammation induces a significant up-regulation of MOR binding sites (25 to 47 fmol/mg of protein) on DRG membranes without affecting the affinity of either full or partial MOR agonists. In our immunohistochemical studies, the number of MOR-immunoreactive neurons consistently increased. This increase was mostly caused by small-diameter nociceptive DRG neurons. The full agonist DAMGO induced MOR G-protein coupling in DRG of animals without FCA inflammation (EC50 = 56 nM; relative Emax = 100%). FCA inflammation resulted in significant increases in DAMGO-induced MOR G-protein coupling (EC50 = 29 nM; relative Emax = 145%). The partial agonist buprenorphine hydrochloride (BUP) showed no detectable G-protein coupling in DRG of animals without FCA inflammation; however, partial agonist activity of BUP-induced MOR G-protein coupling was detectable in animals with FCA inflammation (EC50 = 1.6 nM; relative Emax = 82%). In behavioral studies, administration of BUP produced significant antinociception only in inflamed but not in noninflamed paws. These findings show that inflammation causes changes in MOR binding and G-protein coupling in primary afferent neurons. They further underscore the important differences in clinical studies testing peripherally active opioids in inflammatory painful conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app