JOURNAL ARTICLE

Structural tuning of charge, orbital, and spin ordering in double-cell perovskite series between NdBaFe(2)O(5) and HoBaFe(2)O(5)

Patrick M Woodward, Emmanuelle Suard, Pavel Karen
Journal of the American Chemical Society 2003 July 23, 125 (29): 8889-99
12862485
Charge, orbital, and magnetic ordering of NdBaFe(2)O(5) and HoBaFe(2)O(5), the two end-members of the double-cell perovskite series RBaFe(2)O(5), have been characterized over the temperature range 2-450 K, using differential scanning calorimetry, neutron thermodiffractometry and high-resolution neutron powder diffraction. Upon cooling, both compounds transform from a class-III mixed valence (MV) compound, where all iron atoms exist as equivalent MV Fe(2.5+) ions, through a "premonitory" charge ordering into a class-II MV compound, and finally to a class-I MV phase at low-temperature. The latter phase is characterized by Fe(2+)/Fe(3+) charge ordering as well as orbital ordering of the doubly occupied Fe(2+) d(xz) orbitals. The relative simplicity of the crystal and magnetic structure of the low-temperature charge-ordered state provide an unusual opportunity to fully characterize the classical Verwey transition, first observed in magnetite, Fe(3)O(4). Despite isotypism of the title compounds at high temperature, neutron diffraction analysis reveals striking differences in their phase transitions. In HoBaFe(2)O(5), the Verwey transition is accompanied by a reversal of the direct Fe-Fe magnetic coupling across the rare earth layer, from ferromagnetic in the class-II and -III MV phases to antiferromagnetic in the low-temperature class-I MV phase. In NdBaFe(2)O(5), the larger Nd(3+) ion increases the Fe-Fe distance, thereby weakening the Fe-Fe magnetic interaction. This decouples the charge and magnetic ordering so that the Fe-Fe interaction remains ferromagnetic to low temperature. Furthermore, the symmetry of the charge-ordered class-I MV phase is reduced from Pmma to P2(1)()ma and the magnitude of the orbital ordering is diminished. These changes destabilize the charge-ordered state and suppress the temperature at which the Verwey transition occurs. A comparison of the magnetic and structural features of RBaFe(2)O(5) compounds is included in order to illustrate how structural tuning, via changes in the radius of the rare-earth ion, can be used to alter the physical properties of these double-cell perovskites.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
12862485
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"