Journal Article
Add like
Add dislike
Add to saved papers

Erectile physiological and pathophysiological pathways involved in erectile dysfunction.

Journal of Urology 2003 August
PURPOSE: The importance of signaling pathways in penile smooth muscles involved in normal erection and erectile dysfunction (ED) is discussed based on a review of the literature.

MATERIALS AND METHODS: Erection is basically a spinal reflex that can be initiated by recruitment of penile afferents but also by visual, olfactory and imaginary stimuli. The generated nervous signals will influence the balance between the contractant and relaxant factors, which control the degree of contraction of penile smooth muscles and, thus, determine the functional state of the penis. The different steps involved in neurotransmission, impulse propagation and intracellular transduction of neural signals may be changed in different types of erectile dysfunction.

RESULTS: Recent findings have suggested an important role for RhoA/Rho kinase in the regulation of cavernosal smooth muscle tone and that changes in this pathway may contribute to ED in various patient subgroups, eg diabetes and vascular disease. Neurogenic nitric oxide is still considered the most important factor for immediate relaxation of penile vessels and corpus cavernosum. However, endothelially generated nitric oxide seems essential for maintaining erection. Endothelial dysfunction can contribute to ED in several patient subgroups. In addition, in conditions associated with reduced function of nerves and endothelium, such as aging, hypertension, smoking, hypercholesterolemia and diabetes, circulatory and structural changes in the penile tissues can result in arterial insufficiency and defect muscle relaxation.

CONCLUSIONS: Different types of ED often have overlapping pathophysiologies but may also have common pathways contributing to ED. Such pathways may be potential treatment targets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app