Castration-induced increases in insulin-like growth factor-binding protein 2 promotes proliferation of androgen-independent human prostate LNCaP tumors

Satoshi Kiyama, Kevin Morrison, Tobias Zellweger, Majid Akbari, Michael Cox, Duan Yu, Hideaki Miyake, Martin E Gleave
Cancer Research 2003 July 1, 63 (13): 3575-84
Activation of alternative growth factor pathways after androgen withdrawal is one mechanism mediating androgen-independent (AI) progression in advanced prostate cancer. Insulin-like growth factor (IGF) I activation is modulated by a family of IGF binding proteins (IGFBPs). Although IGFBP-2 is one of the most commonly overexpressed genes in hormone refractory prostate cancer, the functional significance of changes in IGF-I signaling during AI progression remains poorly defined. In this article, we characterize changes in IGFBP-2 in the LNCaP tumor model after androgen withdrawal and evaluate its functional significance in AI progression using gain-of-function and loss-of-function analyses. IGFBP-2 mRNA and protein levels increase 2-3-fold after androgen withdrawal in LNCaP cells in vitro in LNCaP tumors during AI progression in vivo. Increased IGFBP-2 levels after castration were also identified using a human prostate tissue microarray of untreated and posthormone therapy-treated prostatectomy specimens. LNCaP cell transfectants that stably overexpressed IGFBP-2 progressed more rapidly after castration than control tumors. Antisense oligonucleotides (ASOs) targeting the translation initiation site of IGFBP-2 reduced IGFBP-2 mRNA and protein expression by >70% in a dose-dependent and sequence-specific manner. ASO-induced decreases in IGFBP-2-reduced LNCaP cell growth rates and increased apoptosis 3-fold. LNCaP tumor growth and serum prostate-specific antigen levels in mice treated with castration plus adjuvant IGFBP-2 ASOs were significantly reduced compared with mismatch control oligonucleotides. Increased IGFBP-2 levels after androgen ablation may represent an adaptive response that helps potentiate IGF-I-mediated survival and mitogenesis and promote androgen-independent tumor growth. Inhibiting IGFBP-2 expression using ASO technology may offer a treatment strategy to delay AI progression.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"