JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Sap flow of three co-occurring Mediterranean woody species under varying atmospheric and soil water conditions.

Tree Physiology 2003 August
We studied the seasonal patterns of water use in three woody species co-occurring in a holm oak forest in northeastern Spain. The three species studied, Quercus ilex L., Phillyrea latifolia L. and Arbutus unedo L., constitute more than 99% of the total basal area of the forest. The study period included the dry seasons of 1999 and 2000. Water use was estimated with Granier-type sap flux sensors. Standard meteorological variables, soil water content and leaf water potentials were also monitored. All monitored individuals reduced leaf-related sap flow (Q(l)) during the summer, concurrent with an increase in soil moisture deficit (SMD). Despite similar maximum Q(l) between species, the decline in Q(l) with increasing SMD was species-dependent. The average reduction in Q(l) between early summer and the peak of the drought was 74% for A. unedo (n = 3), 58% for P. latifolia (n = 3) and 87% for Q. ilex (n = 1). The relationship between canopy stomatal conductance (G(s)) and vapor pressure deficit (D) changed during the course of the drought, with progressively lower G(s) for any given D. Summertime reductions of Q(l) and G(s) were associated with between-species differences in vulnerability to xylem embolism, and with the corresponding degree of native embolism (lowest in P. latifolia and highest in Q. ilex). Our results, combined with previous studies in the same area, outlined differences among the species studied in manner of responding to water shortage, with P. latifolia able to maintain water transport at much lower water potentials than the other two species. In an accompanying experiment, A. unedo responded to an experimental reduction in water availability by reducing Q(l) during the summer. This species also modified its water use between years according to the different seasonal patterns of precipitation. These results are discussed in relation to the possible impacts that climate change will have on Q. ilex-dominated forests.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app