Add like
Add dislike
Add to saved papers

Hepatic biotransformation of the new calcium-mimetic agent, RWJ-68025, in the rat and in man--API-MS/MS identification of metabolites.

The in-vitro biotransformation of a new calcium-mimetic agent and benzenemethanamine analogue, RWJ-68025, was studied after incubation with rat and human hepatic S9 fractions in the presence of an NADPH-generating system. Unchanged RWJ-68025 (44-48% of the sample) plus 12 metabolites were profiled, quantified, and tentatively identified on the basis of API (ionspray)-MS and MS/MS data, and ethyl derivatization for phenolic and carboxylic metabolites. Four metabolic pathways for RWJ-68025 were proposed: pathway 1, O-demethylation; pathway 2, phenyl oxidation; pathway 3, methyl oxidation; and pathway 4, N-dealkylation/acetylation. Pathway 1 formed a major metabolite, O-desmethyl-RWJ-68025 (M1; RWJ-68311; 26% in rat; 16% in human fraction). Pathway 2 produced one major (M2; 12-17% in rat and human fraction) and two minor phenolic metabolites (M4 and M5; all <1% in both species), and in conjunction with step 1, formed hydroxy-M1 (M3; 4-5% in both species). Pathways 3 and 4 formed seven minor oxidized metabolites (M6-M12). RWJ-68025 was extensively metabolized in the rat and human hepatic S9 fractions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app