JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A snapshot of the low temperature stress transcriptome of developing rice seedlings (Oryza sativa L.) via ESTs from subtracted cDNA library.

Rice (Oryza sativa L.) is sensitive to chilling particularly during early seedling development. Given the biochemical complexity of tolerance mechanisms, genetic potential for this trait depends on highly coordinated expression of many genes. We used a simple cDNA subtraction strategy to develop Expressed Sequence Tags (ESTs) that represent an important subset of cold stress-upregulated genes. The 3,084 subtracted cDNA clones represent a total of 1,967 unigenes from 1,354 singletons and 613 contigs. As expected in the developing seedlings, genes involved in basic cellular processes, i.e., metabolism, growth and development, protein synthesis, folding and destination, cellular transport, cell division and DNA replication were widely represented. Genes with stress-related and regulatory functions comprised 23.17% of the total ESTs. These categories included proteins with known function in cellular defenses against abiotic (drought, cold and salinity) and biotic (pathogen) stresses, and proteins involved in developmental and stress response signalling and transcription. Based on the types of genes represented, tolerance mechanisms rely on precise integration of developmental processes with stress-related responses. A large fraction of the ESTs (38.7%) represents unknown proteins. This EST library is a rich source of cold stress-related genes, and supplements for other publicly available libraries for comprehensive analysis of the stress-response transcriptome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app