Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Induction of apoptosis by hydroxydibenzoylmethane through coordinative modulation of cyclin D3, Bcl-X(L), and Bax, release of cytochrome c, and sequential activation of caspases in human colorectal carcinoma cells.

DBM (dibenzoylmethane) is a minor constituent of licorice that has antimutagenic activity. However, its other biological activities are not well-known. The structurally related beta-diketones hydroxydibenzoylmethane (HDB) and hydroxymethyldibenzoylmethane (HMDB) were able to induce apoptosis in colorectal carcinoma COLO 205 cells. Thus, the effect of structurally related beta-diketones on cell viability, DNA fragmentation, and caspase activity was assessed. The potency of these compounds on these features of apoptosis were in the order of HDB > HMDB > DBM in colorectal carcinoma COLO 205 cells. Here, we found that HDB-induced apoptotic cell death was accompanied by upregulation of cyclin D3, Bax, and p21 and down-regulation of Bcl-X(L), while HDB had no effect on the levels of Bcl-2 and Bad protein. These results indicate that HDB allows caspase-activated deoxyribonuclease to enter the nucleus and degrade chromosomal DNA and induces DFF-45 degradation. It is suggested that HDB-induced apoptosis is triggered by the release of cytochrome c into cytosol, procaspase-9 processing, activation of caspase-3 and caspase-2, degradation of PARP, and DNA fragmentation caused by the caspase-activated deoxyribonuclease through the digestion of DFF-45. The induction of apoptosis by HDB may provide a pivotal mechanism for its cancer chemopreventive action.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app