JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cholinergic neuropathology in a mouse model of Alzheimer's disease.

Transgenic mice overexpressing mutant human amyloid precursor protein (PDAPP mice) develop several Alzheimer's disease (AD)-like lesions including an age-related accumulation of amyloid-beta (Abeta)-containing neuritic plaques. Although aged, heterozygous PDAPP mice also exhibit synaptic and glial cell changes characteristic of AD pathology, no evidence of widespread neuronal loss has been observed. The present study sought to determine whether homozygous PDAPP mice, which express very high levels of Abeta peptide, exhibit AD-like cholinergic degenerative changes, and whether the changes parallel the deposition of Abeta plaques. Mice were examined at 2 and 4 months and at 1 and 2 years of age. There was an age-related increase in the density of Abeta plaques in the cortex and hippocampus of the PDAPP animals; at 4 months of age there were very few plaques, and at 2 years there was a very high density of plaques. There was an age-related reduction in the density of cholinergic nerve terminals in the cerebral cortex; at 2 months there was a normal density of nerve terminals, but as early as age 4 months there was an approximately 50% reduction. However, at age 2 years there was no difference in the number or size of basal forebrain cholinergic somata compared with 2-month-old PDAPP mice. These data indicated that the homozygous PDAPP mouse exhibits cholinergic nerve terminal degenerative pathology and that the cortical neurodegenerative changes occur before the deposition of Abeta-containing neuritic plaques.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app