Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

AFM and STM study of beta-amyloid aggregation on graphite.

Ultramicroscopy 2003 October
Atomic force microscopy (AFM) and scanning tunneling microscopy (STM) have been employed in situ and ex situ to directly study the aggregation of beta-amyloid(1-42) (Abeta42) peptide on hydrophobic graphite. From in situ AFM images, Abeta42 peptides were seen to aggregate into the sheets that preferred to three orientations with characteristic 3-fold symmetry (Proc. Natl. Acad. Sci. USA 96 (1999) 3688). The sheets were formed by parallel narrow lines with a height of 0.8-1.0nm and a width of 12-14nm. The narrow lines looked like beaded chains and have a right-handed axial periodicity. The high-resolution ex situ AFM and STM images showed that some fibrils of beta-amyloid had a characteristic domain texture, indicating they were formed through the association of protofibrils and monomers. The fibril containing lateral associated filaments that exhibited right-handed twist was clearly observed in the STM image. These results provide important clues to study the detailed structure of beta-amyloid aggregates and the mechanism of the Abeta fibrils formation on hydrophobic surface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app