ENGLISH ABSTRACT
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

[Screening and identification of novel genes involved in biosynthesis of ginsenoside in Panax ginseng plant].

The root of Panax ginseng plant undergoes a specific developmental process to become a biosynthesis and accumulation organ for ginsenosides. To identify and analyze genes involved in the biosynthesis of ginsenoside, suppression subtractive hybridization (SSH) between mRNAs of 4- and 1-year-old root tissues was performed, and a subtracted cDNA library specific to 4-year-old roots was constructed. Forty cDNA clones selected randomly from the subtracted cDNA library were sequenced. Sequence information of all clones was evaluated by Nucleotide Blast analysis in GenBank/DDBJ/EMBL. The results showed that six subtracted cDNA clones represented the novel genes (ESTs), because no sequence homology with any known sequences was found in the database. Expression in 4-year-old P. ginseng root tissues was verified by reverse Northern dot hybridization for the six clones. These six novel genes were named GBR1, GBR2, GBR3, GBR4, GBR5, and GBR6, and their Accession numbers of GenBank are AF485334, AF485335, AF485336, AF485337, AF485332, and AF485333, respectively. Finally, Northern blot analysis and semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) confirmed that these six novel genes were differentially expressed in the defined development stage of P. ginseng plant roots. It is possible that their overexpression may play an important role in the ginsenoside biosynthesis. In addition, most of transcripts of all genes could also be detected in other P. ginseng plant tissues such as stem, leaf and seed. Our results provided a basis for obtaining the full-length cDNA sequences of such six novel genes, and for identifying their function involved in the biosynthesis of ginsenoside.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app