JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

PIP2 binding residues of Kir2.1 are common targets of mutations causing Andersen syndrome.

Neurology 2003 June 11
BACKGROUND: Mutations in KCNJ2, the gene encoding the inward-rectifying K+ channel Kir2.1, cause the cardiac, skeletal muscle, and developmental phenotypes of Andersen-Tawil syndrome (ATS; also known as Andersen syndrome). Although pathogenic mechanisms have been proposed for select mutations, a common mechanism has not been identified.

METHODS: Seventeen probands presenting with symptoms characteristic of ATS were evaluated clinically and screened for mutations in KCNJ2. The results of mutation analysis were combined with those from previously studied subjects to assess the frequency with which KCNJ2 mutations cause ATS.

RESULTS: Mutations in KCNJ2 were discovered in nine probands. These included six novel mutations (D71N, T75R, G146D, R189I, G300D, and R312C) as well as previously reported mutations R67W and R218W. Six probands possessed mutations of residues implicated in binding membrane-associated phosphatidylinositol 4,5-bisphosphate (PIP2). In total, mutations in PIP(2)-related residues accounted for disease in 18 of 29 (62%) reported KCNJ2 -based probands with ATS. Also reported is that mutation R67W causes the full clinical triad in two unrelated males.

CONCLUSIONS: The novel mutations corresponding to residues involved in Kir2.1 channel-PIP2 interactions presented here as well as the overall frequency of mutations occurring in these residues indicate that defects in PIP2 binding constitute a major pathogenic mechanism of ATS. Furthermore, screening KCNJ2 in patients with the complex phenotypes of ATS was found to be invaluable in establishing or confirming a disease diagnosis as mutations in this gene can be identified in the majority of patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app