JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Study on the fate of petroleum-derived polycyclic aromatic hydrocarbons (PAHs) and the effect of chemical dispersant using an enclosed ecosystem, mesocosm.

Polycyclic Aromatic Hydrocarbons (PAHs) are one of the components found in oil and are of interest because some are toxic. We studied the environmental fate of PAHs and the effects of chemical dispersants using experimental 500 l mesocosm tanks that mimic natural ecosystems. The tanks were filled with seawater spiked with the water-soluble fraction of heavy residual oil. Water samples and settling particles in the tanks were collected periodically and 38 PAH compounds were analyzed by gas chromatography-mass spectrometry (GC-MS). Low molecular weight (LMW) PAHs with less than three benzene rings disappeared rapidly, mostly within 2 days. On the other hand, high molecular weight (HMW) PAHs with more than four benzene rings remained in the water column for a longer time, up to 9 days. Also, significant portions (10-94%) of HMW PAHs settled to the bottom and were caught in the sediment trap. The addition of chemical dispersant accelerated dissolution and biodegradation of PAHs, especially HMW PAHs. The dispersant amplified the amounts of PAHs found in the water column. The amplification was the greater for the more hydrophobic PAHs, with an enrichment factor of up to six times. The increased PAHs resulting from dispersant use overwhelmed the normal degradation and, as a result, higher concentrations of PAHs were observed in water column throughout the experimental period. We conclude that the addition of the dispersant could increase the concentration of water column PAHs and thus increase the exposure and potential toxicity for organisms in the natural environment. By making more hydrocarbon material available to the water column, the application of dispersant reduced the settling of PAHs. For the tank with dispersant, only 6% of chrysene initially introduced was detected in the sediment trap whereas 70% was found in the trap in the tank without dispersant.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app