JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Approaching real-time molecular diagnostics: single-pair fluorescence resonance energy transfer (spFRET) detection for the analysis of low abundant point mutations in K-ras oncogenes.

The aim of this study was to develop new strategies for analyzing molecular signatures of disease states approaching real-time using single pair fluorescence resonance energy transfer (spFRET) to rapidly detect point mutations in unamplified genomic DNA. In addition, the detection process was required to discriminate between normal and mutant (minority) DNAs in heterogeneous populations. The discrimination was carried out using allele-specific primers, which flanked the point mutation in the target gene and were ligated using a thermostable ligase enzyme only when the genomic DNA carried this mutation. The allele-specific primers also carried complementary stem structures with end-labels (donor/acceptor fluorescent dyes, Cy5/Cy5.5, respectively), which formed a molecular beacon following ligation. We coupled ligase detection reaction (LDR) with spFRET to identify a single base mutation in codon 12 of a K-ras oncogene that has high diagnostic value for colorectal cancers. A simple diode laser-based fluorescence system capable of interrogating single fluorescent molecules undergoing FRET was used to detect photon bursts generated from the molecular beacon probes formed upon ligation. LDR-spFRET provided the necessary specificity and sensitivity to detect single-point mutations in as little as 600 copies of human genomic DNA directly without PCR at a level of 1 mutant per 1000 wild type sequences using 20 LDR thermal cycles. We also demonstrate the ability to rapidly discriminate single base differences in the K-ras gene in less than 5 min at a frequency of 1 mutant DNA per 10 normals using only a single LDR thermal cycle of genomic DNA (600 copies). Real-time LDR-spFRET detection of point mutations in the K-ras gene was accomplished in PMMA microfluidic devices using sheath flows.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app