Definitive ab initio studies of model SN2 reactions CH(3)X+F- (X=F, Cl, CN, OH, SH, NH(2), PH(2))

Jason M Gonzales, Chaeho Pak, R Sidney Cox, Wesley D Allen, Henry F Schaefer III, Attila G Császár, György Tarczay
Chemistry: a European Journal 2003 May 23, 9 (10): 2173-92
The energetics of the stationary points of the gas-phase reactions CH(3)X+F(-)-->CH(3)F+X(-) (X=F, Cl, CN, OH, SH, NH(2) and PH(2)) have been definitively computed using focal point analyses. These analyses entailed extrapolation to the one-particle limit for the Hartree-Fock and MP2 energies using basis sets of up to aug-cc-pV5Z quality, inclusion of higher-order electron correlation [CCSD and CCSD(T)] with basis sets of aug-cc-pVTZ quality, and addition of auxiliary terms for core correlation and scalar relativistic effects. The final net activation barriers for the forward reactions are: E (b/F,F)=-0.8, E (b/F, Cl)=-12.2, E (b/F,OH)=+13.6, E b/F,OH=+16.1, E b/F,SH=+2.8, Eb/F, NH=+32.8, and E b/F,PH =+19.7 kcal x mol(-1). For the reverse reactions E b/F,F= -0.8, Eb/Cl,F =+18.3, E b/CN,F=+12.2, E b/OH,F =-1.8, E b/SH,F =+13.2, E b/NH(2),=-1.5, and E b/PH(2) =+9.6 kcal x mol(-1). The change in energetics between the CCSD(T)/aug-cc-pVTZ reference prediction and the final extrapolated focal point value is generally 0.5-1.0 kcal mol(-1). The inclusion of a tight d function in the basis sets for second-row atoms, that is, utilizing the aug-cc-pV(X+d)Z series, appears to change the relative energies by only 0.2 kcal x mol(-1). Additionally, several decomposition schemes have been utilized to partition the ion-molecule complexation energies, namely the Morokuma-Kitaura (MK), reduced variational space (RVS), and symmetry adapted perturbation theory (SAPT) techniques. The reactant complexes fall into two groups, mostly electrostatic complexes (FCH(3).F(-) and ClCH(3).F(-)), and those with substantial covalent character (NCCH(3).F(-), CH(3)OH.F(-), CH(3)SH.F(-), CH(3)NH(2).F(-) and CH(3)PH(2).F(-)). All of the product complexes are of the form FCH(3).X(-) and are primarily electrostatic.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"