IN VITRO
JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Mu-opioid receptors facilitate the propagation of excitatory activity in rat hippocampal area CA1 by disinhibition of all anatomical layers.

Hippocampal mu-opioid receptors (MORs) have been implicated in memory formation associated with opiate drug abuse. MORs modulate hippocampal synaptic plasticity acutely, when chronically activated, and during drug withdrawal. At the network level, MORs increase excitability in area CA1 by disinhibiting pyramidal cells. The precise inhibitory interneuron subtypes affected by MOR activation are unknown; however, not all subtypes are inhibited, and specific interneuron subtypes have been shown to preferentially express MORs. Here we investigate, using voltage-sensitive dye imaging in brain slices, the effect of MOR activation on the patterns of inhibition and on the propagation of excitatory activity in rat hippocampal CA1. MOR activation augments excitatory activity evoked by stimulating inputs in stratum oriens [i.e., Schaffer collateral and commissural pathway (SCC) and antidromic], stratum radiatum (i.e., SCC), and stratum lacunosum-moleculare (SLM; i.e., perforant path and thalamus). The augmented excitatory activity is further facilitated as it propagates through the CA1 network. This was observed as a proportionately larger increase in amplitudes of excitatory activity at sites distal from where the activity was evoked. This facilitation was observed for excitatory activity propagating from all three stimulation sites. The augmentation and facilitation were prevented by GABAA receptor antagonists (bicuculline, 30 microM), but not by GABAB receptor antagonists (CGP 55845, 10 microM). Furthermore, MOR activation inhibited IPSPs in all layers of area CA1. These findings suggest that MOR-induced suppression of GABA release onto GABAA receptors augments all inputs to CA1 pyramidal cells and facilitates the propagation of excitatory activity through the network of area CA1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app