English Abstract
Journal Article
Add like
Add dislike
Add to saved papers

[Influence of the posterior tibial tendon on the medial arch of the foot: an in vitro kinetic and kinematic study].

INTRODUCTION: The respective contributions of the active and passive structures of the foot to the stability of the medical arch were investigated using an in vitro kinetic and kinematic model. The effect of the tibialis posterior tendon on foot and ankle movements, and plantar pressure distribution of the foot were tested in a cadaveric human foot.

METHOD: The stance phase from heel-contact to toe-off of normal walking gait and after tibialis posterior tendon rupture was simulated in eight roentenographically normal human feet (age 66 +/- 19 years, males). Ground reaction force and tibial inclination was simulated by means of a tilting angle and force-controlled translation stage. Plantar pressure was measured using a pressure-measuring platform. The force developed by the flexors and extensor muscles of the foot were simulated via cables attached to 7 force-controlled hydraulic cylinders. Tibial rotation was produced by an electric servo-motor, and foot movements measured with an ultrasonic analysis system.

RESULTS: The model was verified against the plantar distribution and kinematics of healthy subjects measured during normal gait. Tibialis posterior deficit did not result in any detectable changes in pressure or force-time integral in the medial regions of the foot--a common sign of flat foot (pressure: midfoot 0.2 < or = 0.9; medial forefoot 0.5 < or = p < or = 0.9; hallux 0.5 < or = p < or = 0.9; force-time integral: midfoot p = 0-871; medial forefoot p = 0.632; hallux p = 0.068). Only small tendential changes in the kinematics of the talus and calcaneus were observed in dorsiflexion (0-58 sec; talus 0.1 < or = p < or = 0.6; calcaneus 0.4 < or = p < or = 0.06) and eversion (talus: 0-60 sec. 0.1 < or = p < or = 0.6; calcaneus: 37-60 sec. 0.2 < or = p < or = 0.7).

CONCLUSION: The results of this in vitro study show that defective tibialis posterior alone does not produce significant changes in the kinetics or kinematics of the stance phase of normal gait. This suggests that the development of flat foot observed in degeneration of the tibialis posterior tendon occurs only after fatigue of the passive structures of the foot.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app