Decreasing peak flow rate with a new bag-valve-mask device: effects on respiratory mechanics, and gas distribution in a bench model of an unprotected airway

Horst G Wagner-Berger, Volker Wenzel, Angelika Stallinger, Wolfgang G Voelckel, Klaus Rheinberger, Karl H Stadlbauer, Sven Augenstein, Volker Dörges, Karl H Lindner, Christoph Hörmann
Resuscitation 2003, 57 (2): 193-9
Reducing inspiratory flow rate and peak airway pressure may be important in order to minimise the risk of stomach inflation when ventilating an unprotected airway with positive pressure ventilation. The purpose of this study was to assess the effects of a newly developed bag-valve-mask device (SMART BAG), O-Two Systems International, Ont., Canada) that limits peak inspiratory flow. A bench model simulating a patient with an unintubated airway was used consisting of a face mask, manikin head, training lung (lung compliance, 100 ml/cm H(2)O, airway resistance 4 cm H(2)O/l/s, lower oesophageal sphincter pressure 20 cm H(2)O and simulated stomach). Twenty nurses were randomised to each ventilate the manikin using a standard single person technique for 1 min (respiratory rate, 12/min) with either a standard adult self-inflating bag, or the SMART BAG. The volunteers were blinded to the experimental design of the model until completion of the experimental protocol. The SMART BAG vs. standard self-inflating bag resulted in significantly (P<0.05) lower mean+/-S.D. peak inspiratory flow rates (32+/-2 vs. 61+/-13 l/min), peak inspiratory pressure (12+/-2 vs. 17+/-2 cm H(2)O), lung tidal volumes (525+/-111 vs. 680+/-154 ml) and stomach tidal volumes (0+/-0 vs. 17+/-36 ml), longer inspiratory times (1.9+/-0.3 vs. 1.5+/-0.3 s), but significantly higher mask leakage (26+/-13 vs. 14+/-8%); mask tidal volumes (700+/-104 vs. 785+/-172 ml) were comparable. The mask leakage observed is not an uncommon factor in bag-valve-mask ventilation with leakage fractions of 25-40% having been previously reported. The differences observed between the standard BVM and the SMART BAG are due more to the anatomical design of the mask and the non-anatomical shape of the manikin face than the function of the device. Future studies should remove the mask to manikin interface and should introduce a standardized mask leakage fraction. The use of a two-person technique may have removed the problem of mask leakage. In conclusion, using the SMART BAG during simulated ventilation of an unintubated patient in respiratory arrest significantly decreased inspiratory flow rate, peak inspiratory pressure, stomach tidal volume, and resulted in a significantly longer inspiratory time when compared to a standard self-inflating bag.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"