Add like
Add dislike
Add to saved papers

Repression of Smad-dependent transforming growth factor-beta signaling by Epstein-Barr virus latent membrane protein 1 through nuclear factor-kappaB.

EBV-encoded LMP-1 is absolutely required for EBV transformation of cells. Previous studies showed that LMP-1 is responsible for mediating resistance to the anti-proliferative effects of TGF-beta that characterizes EBV-transformed cells. To clarify the mechanisms of resistance to TGF-beta by LMP-1, we examined the effect of expression of LMP-1 on the activity of TGF-beta-responsive promoters. Interestingly, LMP-1 inhibited TGF-beta-responsive promoters activity despite lack of direct interaction of LMP-1 and Smad proteins, intracellular signaling molecules in the TGF-beta signal transduction pathway. Although TGF-beta treatment increased the expression of p15, TGF-beta-induced gene, this effect was counteracted by expression of LMP-1. The repressive effect was mapped to the NF-kappaB activation domains in the cytoplasmic carboxyl terminus of LMP-1. Furthermore, LMP-1-mediated inhibition of TGF-beta-responsive promoter was markedly restored after inhibition of NF-kappaB activity. LMP-1 failed to affect receptor-dependent formation of heteromers containing Smad proteins as well as the DNA-binding activity of Smad proteins. Overexpression of the transcriptional coactivator CBP and p300 abrogated the inhibitory effect of LMP-1 on the TGF-beta-responsive promoter. Our results suggest that LMP-1 represses the TGF-beta signaling through the NF-kappaB signaling pathway at transcriptional level by competing for a limited pool of transcriptional coactivators. These results enhance our understanding of the molecular mechanisms of viral pathogenesis in EBV-associated malignancies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app