Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mechanism underlying enhanced endothelium-dependent vasodilatation in thoracic aorta of early stage streptozotocin-induced diabetic mice.

AIM: To investigate the mechanism of the enhanced endothelium-dependent vasodilatation in thoracic aorta of the early stage streptozotocin (STZ)-induced diabetic C57BL/6J mice.

METHODS: Radioimmunity was used to detect the metabolite of prostaglandin I2 (PGI2), 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha), in the blood serum. Vascular muscle tension and phenylephrine (PE)-induced rhythmic activity in the isolated thoracic aorta of mice were also compared.

RESULTS: 6-Keto-PGF1 alpha in the serum was significantly higher in STZ-induced diabetic mice than age-matched controls [(1.8+/-1.0) microg./L vs (0.5+/-0.3) microg/L, P<0.01]. PE induced rhythmic activity in both diabetic and control mouse aorta but the amplitude was markedly higher in diabetic mice than in controls [(4.9+/-1.7) % vs (12+/-5) %, P<0.01]. PE, high K+ solution-induced contraction, and acetylcholine (ACh)-induced relaxation [(56+/-10) % vs (81+/-8) %, P<0.01] were notably enhanced in diabetic mice than those in controls. Alone NG-nitro-L-arginine methyl ester (L-NAME) or 6-(phenylamino)-5,8-quinolinedione (LY-83583) abolished the rhythmic activity and ACh-induced relaxation in controls but only partially inhibited them in diabetic mice. Indomethacin did not affect rhythmic activity but depressed ACh-induced relaxation. L-NAME plus indomethacin significantly depressed the rhythmic activity and ACh-induced relaxation than L-NAME alone (P<0.01). Furthermore tetraethylammonium plus L-NAME abolished them in diabetic mice.

CONCLUSION: The mechanism that enhanced endothelium-dependent vasodilatation in STZ-induced diabetic mice is due to enhanced production of PGI2 and endothelium-derived hyperpolarizing factor (EDHF). The phenomena maybe only take place in early stage of diabetic mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app