Add like
Add dislike
Add to saved papers

On the hydrolysis of the dioxouranium(VI) ion in sulfate solutions.

The formation of ternary UO2(2+)-(OH-)-SO4(2-) complexes has been studied at 25 degrees C in 3 M NaClO4 ionic medium by measurements with a glass electrode. The solutions had uranium concentrations between 0.3 and 30 mM, sulfate between 20 and 200 mM, and 1.66 < or = [SO4(2-)]/[U(VI)] < or = 300. The hydrogen ion concentration ranged from 10(-3) M to incipient precipitation of basic sulfates. This occurred, depending on the metal concentration, at [H+] between 10(-4) and 10(-5.3) M. In the interpretation of the data the stabilities of binary complexes were assumed from independent sources. The data could be explained with the mixed complexes and equilibria (beta(pqr)(3sigma) refers to pUO2(2+) + qH2O + rSO4(2-) <==> (UO2)p(OH)q(SO4)r(2p-q-2r) + qH+): logbeta222 = -2.94 +/- 0.03, logbeta341 = -9.82 +/- 0.06, logbeta211 = -0.30 +/- 0.09, logbeta212 = 1.09 +/- 0.09, logbeta351 = -15.04 +/- 0.09 and logbeta462 = -14.40 +/- 0.06. The fit could be improved by including UO2OH+ with logbeta110 = -5.1 +/- 0.1. The identity of the minor species remains, however, an open question.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app