Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effect of steric hindrance on carbon dioxide absorption into new amine solutions: thermodynamic and spectroscopic verification through solubility and NMR analysis.

Acid gas absorption technology is of great importance in these days for the prevention of global warming and the resulting worldwide climate change. More efficient process design and development for the removal of acid gases has become important, together with the development of new absorbents as one of urgent areas of research in addressing global-warming problems. In the present work, aqueous solutions of 2-amino-2-hydroxymethyl-1,3-propanediol (AHPD), a sterically hindered amine, has been examined as a potential CO2 absorbent and compared with the most commonly used absorbent, monoethanolamine (MEA) solution, through equilibrium solubility measurements and 13C NMR spectroscopic analyses. The solubilities of CO2 in aqueous 10 mass % AHPD solutions were higher than those in aqueous 10 mass % MEA solutions above 4 kPa at 298.15 K, but below 4 kPa, the solubility behavior appeared to be the opposite. The solubility difference between these two solutions increased with the CO2 partial pressures above the crossover pressure. Equilibrated CO2-MEA-H2O and CO2-AHPD-H2O solutions at various CO2 partal pressures ranging from 0.01 to 3000 kPa were analyzed by 13C NMR spectroscopy to provide a more microscopic understanding of the reaction mechanisms in the two solutions. In the CO2-amine-H2O solutions, amine reacted with CO2 to form mainly the protonated amine (AMH+), bicarbonate ion (HCO3-), and carbamate anion (AMCO2-), where the quantitative ratio of bicarbonate ion to carbamate anion strongly influenced the CO2 loading in the amine solutions. A profusion of bicarbonate ions, but a very small amount of carbamate anions, was identified in the CO2-AHPD-H2O solution, whereas a considerable amount of carbamate anions was formed in the CO2-MEA-H2O solution. AHPD contains more hydroxyl groups than nonhindered MEA, and hence, the chemical shifts in its 13C NMR spectra were strongly influenced by the solution pH values. In contrast, MEA appeared to be insensitive to pH. The strong interrelations among CO2 solubility, CO2 partial pressure, bulkiness of the amine structure, and pH identified through the present experimental investigations can provide basic guidelines for finding new potential organic absorbents, including specifically designed amine chemicals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app