Tumor suppressor p53 dependent recruitment of nucleotide excision repair factors XPC and TFIIH to DNA damage

Qi-en Wang, Qianzheng Zhu, Manzoor A Wani, Gulzar Wani, Jianming Chen, Altaf A Wani
DNA Repair 2003 May 13, 2 (5): 483-99
Functional tumor suppressor p53 is mainly required for efficient global genomic repair (GGR), a subpathway of nucleotide excisions repair (NER). In this study, the regulatory effect of p53, on the spaciotemporal recruitment of XPC and TFIIH to DNA damage sites, was investigated in repair-proficient and -deficient human cells in situ. Photoproducts were induced through micropore UV irradiation of discrete subnuclear areas of intact cells and the specific lesions, as well as recruited repair factors, were detected by immunofluorescent intensity and density of the damaged DNA subnuclear spots (SNS). Both cyclobutane pyrimidine dimers (CPD) and 6-4 photoproducts (6-4PP) were visualized in situ at SNS within irradiated nuclear foci. The in situ repair kinetics revealed that p53-WT normal fibroblasts are proficient for the repair of both CPD and 6-4PP, whereas, p53-Null Li-Fraumeni syndrome (LFS) fibroblasts fail to efficiently repair CPD but not 6-4PP. Colocalization experiments of the NER factors showed that in normal human cells, XPC and TFIIH are rapidly and efficiently recruited to DNA damage within SNS. By contrast, recruitment of both XPC and TFIIH to DNA damage in SNS occurred much less efficiently in p53-Null or p53-compromised cells. The total cellular levels of XPC and XPB were similar in both p53-WT and -Null cells and remained unchanged up to 24h following UV irradiation. The results also showed that dispersal of recruited XPC and TFIIH from DNA damage SNS occurs within a short period after DNA damage. Such dispersal requires functional XPA, XPF and XPG proteins. Taken together, the results demonstrated that p53 plays a pronounced role in the damage recognition and subsequent assembly of repair machinery during GGR and the recruitment of XPC and TFIIH to CPD is p53-dependent. Most likely mechanism of this p53 action is through its downstream effector protein, DDB2.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"