Add like
Add dislike
Add to saved papers

Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: implications for diabetic renal and vascular disease.

While it is thought that advanced glycation end products (AGEs) act by stimulating transforming growth factor (TGF)-beta to mediate diabetic injury, we report that AGEs can activate TGF-beta signaling, Smads, and mediate diabetic scarring directly and independently of TGF-beta. AGEs activate Smad2/3 in renal and vascular cells at 5 min, peaking over 15-30 min before TGF-beta synthesis at 24 h and occurs in TGF-beta receptor I and II mutant cells. This is mediated by RAGE and ERK/p38 mitogen-activated protein kinases (MAPKs). In addition, AGEs also activate Smads at 24 h via the classic TGF-beta-dependent pathway. A substantial inhibition of AGE-induced Smad activation and collagen synthesis by ERK/p38 MAPK inhibitors, but not by TGF-beta blockade, suggests that the MAPK-Smad signaling crosstalk pathway is a key mechanism in diabetic scarring. Prevention of AGE-induced Smad activation and collagen synthesis by overexpression of Smad7 indicates that Smad signaling may play a critical role in diabetic complications. This is further supported by the findings that activation of Smad2/3 in human diabetic nephropathy and vasculopathy is associated with local deposition of AGEs and up-regulation of RAGE. Thus, AGEs act by activating Smad signaling to mediate diabetic complications via both TGF-beta-dependent and -independent pathways, shedding new light on the pathogenesis of diabetic organ injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app