Enflurane decreases glutamate neurotransmission to spinal cord motor neurons by both pre- and postsynaptic actions

Gong Cheng, Joan J Kendig
Anesthesia and Analgesia 2003, 96 (5): 1354-9, table of contents

UNLABELLED: We have previously reported volatile anesthetic actions on glycinergic inhibitory transmission to spinal motor neurons. The present study is a comparable set of experiments on glutamatergic excitatory transmission. We tested the hypothesis that the balance between excitation and inhibition is shifted toward inhibition by larger depressant actions on excitation. Patch-clamp techniques were used to study spontaneous and evoked glutamate alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid currents in rat spinal cord slices. Enflurane (0.6 mM, 1 minimum alveolar anesthetic concentration) significantly decreased spontaneous miniature current frequencies either when sodium channels were blocked (miniature excitatory postsynaptic currents, mEPSCs), or when sodium channels were not blocked (spontaneous excitatory postsynaptic currents, sEPSCs). Enflurane did not affect mEPSC or sEPSC amplitude or kinetics. The effects on mEPSCs and sEPSCs did not differ. Enflurane significantly decreased both amplitude and area of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-evoked currents with no change in kinetics (P < 0.05 and 0.01, respectively). In contrast, enflurane increased miniature glycinergic current frequency when sodium channels were blocked, and prolonged glycinergic current duration. Enflurane actions on glutamatergic excitatory transmission are purely depressant both pre- and postsynaptically, whereas glycinergic inhibition is enhanced presynaptically under some conditions, and always prolonged postsynaptically. Thus, enflurane shifts the balance between synaptic excitation and inhibition in the direction of inhibition.

IMPLICATIONS: Explanations proposed for anesthetic-induced central nervous system depression include enhancement of synaptic inhibition and depression of excitation. The results reported herein suggest that, in the case of enflurane, the mechanism is a shift in the balance toward inhibition. Excitation is uniformly depressed by multiple mechanisms, whereas some anesthetic actions tend to enhance inhibition.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"