JOURNAL ARTICLE

Postinfarction treatment with an adenoviral vector expressing hepatocyte growth factor relieves chronic left ventricular remodeling and dysfunction in mice

Yiwen Li, Genzou Takemura, Ken-ichiro Kosai, Kentaro Yuge, Satoshi Nagano, Masayasu Esaki, Kazuko Goto, Tomoyuki Takahashi, Kenji Hayakawa, Masahiko Koda, Yukinori Kawase, Rumi Maruyama, Hideshi Okada, Shinya Minatoguchi, Hiroyuki Mizuguchi, Takako Fujiwara, Hisayoshi Fujiwara
Circulation 2003 May 20, 107 (19): 2499-506
12695295

BACKGROUND: Hepatocyte growth factor (HGF) is implicated in tissue regeneration, angiogenesis, and antiapoptosis. However, its chronic effects are undetermined on postinfarction left ventricular (LV) remodeling and heart failure.

METHODS AND RESULTS: In mice, on day 3 after myocardial infarction (MI), adenovirus encoding human HGF (Ad.CAG-HGF) was injected into the hindlimb muscles (n=13). As a control (n=15), LacZ gene was used. A persistent increase in plasma human HGF was confirmed in the treated mice: 1.0+/-0.2 ng/mL 4 weeks later. At 4 weeks after MI, the HGF-treated mice showed improved LV remodeling and dysfunction compared with controls, as indicated by the smaller LV cavity and heart/body weight ratio, greater % fractional shortening and LV +/-dP/dt, and lower LV end-diastolic pressure. The cardiomyocytes near MI, including the papillary muscles and trabeculae, were greatly hypertrophied in the treated mice. The old infarct size was similar between the groups, but the infarct wall was thicker in the treated mice, where the density of noncardiomyocyte cells, including vessels, was greater. Fibrosis of the ventricular wall was significantly reduced in them. Examination of 10-day-old MI revealed no proliferation or apoptosis but showed augmented expression of c-Met/HGF receptor in cardiomyocytes near MI, whereas a greater proliferating activity and smaller apoptotic rate of granulation tissue cells in the HGF-treated hearts was observed compared with controls.

CONCLUSIONS: Postinfarction HGF gene therapy improved LV remodeling and dysfunction through hypertrophy of cardiomyocytes, infarct wall thickening, preservation of vessels, and antifibrosis. These findings imply a novel therapeutic approach against postinfarction heart failure.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
12695295
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"