Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Carbon monoxide modulates Fas/Fas ligand, caspases, and Bcl-2 family proteins via the p38alpha mitogen-activated protein kinase pathway during ischemia-reperfusion lung injury.

Carbon monoxide is protective in ischemia-reperfusion organ injury, but the precise mechanisms remain elusive. We have recently shown that low levels of exogenous carbon monoxide (CO) utilize p38 MAPK and attenuate caspase 3 activity to exert an antiapoptotic effect during lung ischemia-reperfusion injury. Our current data demonstrate that CO activates the p38alpha MAPK isoform and the upstream MAPK kinase MKK3 to modulate Fas/Fas ligand expression; caspases 3, 8, and 9; mitochondrial cytochrome c release; Bcl-2 proteins; and poly(ADP-ribose) polymerase cleavage. We correlate our in vitro findings with in vivo studies using MKK3-deficient and Fas-deficient mice. Taken together, our data are the first to demonstrate that CO has an antiapoptotic effect by inhibiting Fas/Fas ligand, caspases, proapoptotic Bcl-2 proteins, and cytochrome c release via the MKK3/p38alpha MAPK pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app