JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Lymphatic uptake of pulmonary delivered radiolabelled solid lipid nanoparticles.

UNLABELLED: Lymphatic drainage plays an important role in the uptake of particulates in the respiratory system, being also associated to the spreading of lung cancer through metastasis development. In recent years solid lipid nanoparticles (SLN) have been proposed as carriers of anti-tumoural drugs, for their low toxicity and surface characteristics make them suitable for either imaging (gamma-scintigraphy) or therapy upon encapsulation of cytotoxic drugs. Assessment of inhaled radiolabelled SLN biodistribution is described in the present work.

METHODS: Nanoparticles (200 nm) were radiolabelled with 99mTc using the lipophilic chelator D,L-hexamehylpropyleneamine oxime (HMPAO). Biodistribution studies were carried out following aerosolisation and administration of a 99mTc-HMPAO-SLN suspension to a group of adult male Wistar rats. A 60 min dynamic image acquisition was performed in a gamma-camera, followed by static image collection at 30 min intervals up to 4 h postinhalation. Radiation counting was performed in organ samples, collected after the animals were sacrificed.

RESULTS: The data show an important and significant uptake of the radiolabelled SLN into the lymphatics after inhalation, and a high rate of distribution in periaortic, axillar and inguinal lymph nodes.

CONCLUSION: Results indicate that SLN could be effective colloidal carriers for lymphoscintigraphy or therapy upon pulmonary delivery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app