Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Interplay between proximal and distal promoter elements is required for squamous differentiation marker induction in the bronchial epithelium: role for ESE-1, Sp1, and AP-1 proteins.

Overexpression of SPRR1B in bronchial epithelial cells is a marker for early metaplastic changes induced by various toxicants/carcinogens. Previously, we have shown that the transcriptional stimulation of SPRR1B expression by phorbol 12-myristate 13-acetate (PMA) is mainly mediated by a -150/-94 bp enhancer harboring two critical 12-O-tetradecanoylphorbol-13-acetate-responsive elements (TREs) and by Jun.Fra-1 dimers. Here, we show that a region between -54 and -39 bp containing an ETS-binding site (EBS) and a GC box is essential for both basal and PMA-inducible SPRR1B transcription. In vivo footprinting demonstrated binding of transcription factors to these elements. However, unlike enhancer TREs, exposure of cells to PMA did not significantly alter the footprinting pattern at these elements. Mutations that crippled both the EBS and GC box suppressed both basal and PMA-inducible SPRR1B transcription. Consistent with this, overexpression of EBS-binding proteins ESE-1 and ESE-3 significantly stimulated SPRR1B promoter activity. Furthermore, preceding SPRR1B transcription, PMA up-regulated mRNA expression of ETS family members such as ESE-1 and ESE-3. Although ESE-1 synergistically activated c-Jun- and PMA-enhanced SPRR1B transcription, coexpression of Sp1 and ESE-1 showed no synergistic or additive effect on promoter activity, indicating an obligatory role for AP-1 proteins in such regulation. In support of this notion, deletion or mutation of two functional TREs inhibited ESE-1- and Sp1-enhanced promoter activation. Thus, the interaction between ESE-1 and Sp1, and AP-1 proteins that bind to the proximal and distal promoter regions, respectively, play a critical role in the induction of squamous differentiation marker expression in bronchial epithelial cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app